本文主要内容
- 4种方式实现计数器功能,对比其性能
- 介绍LongAdder
- 介绍LongAccumulator
来个需求
一个jvm中实现一个计数器功能,需保证多线程情况下数据正确性。
我们来模拟50个线程,每个线程对计数器递增100万次,最终结果应该是5000万。
我们使用4种方式实现,看一下其性能,然后引出为什么需要使用LongAdder、LongAccumulator。
方式一:synchronized方式实现
package com.itsoku.chat32;import java.util.ArrayList;import java.util.List;import java.util.concurrent.CompletableFuture;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutionException;import java.util.concurrent.atomic.LongAccumulator;/*** 跟着阿里p7学并发,微信公众号:javacode2018*/public class Demo1 {static int count = 0;public static synchronized void incr() {count++;}public static void main(String[] args) throws ExecutionException, InterruptedException {for (int i = 0; i < 10; i++) {count = 0;m1();}}private static void m1() throws InterruptedException {long t1 = System.currentTimeMillis();int threadCount = 50;CountDownLatch countDownLatch = new CountDownLatch(threadCount);for (int i = 0; i < threadCount; i++) {new Thread(() -> {try {for (int j = 0; j < 1000000; j++) {incr();}} finally {countDownLatch.countDown();}}).start();}countDownLatch.await();long t2 = System.currentTimeMillis();System.out.println(String.format("结果:%s,耗时(ms):%s", count, (t2 - t1)));}}
输出:
结果:50000000,耗时(ms):1437结果:50000000,耗时(ms):1913结果:50000000,耗时(ms):386结果:50000000,耗时(ms):383结果:50000000,耗时(ms):381结果:50000000,耗时(ms):382结果:50000000,耗时(ms):379结果:50000000,耗时(ms):379结果:50000000,耗时(ms):392结果:50000000,耗时(ms):384
平均耗时:390毫秒
方式2:AtomicLong实现
package com.itsoku.chat32;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutionException;import java.util.concurrent.atomic.AtomicLong;/*** 跟着阿里p7学并发,微信公众号:javacode2018*/public class Demo2 {static AtomicLong count = new AtomicLong(0);public static void incr() {count.incrementAndGet();}public static void main(String[] args) throws ExecutionException, InterruptedException {for (int i = 0; i < 10; i++) {count.set(0);m1();}}private static void m1() throws InterruptedException {long t1 = System.currentTimeMillis();int threadCount = 50;CountDownLatch countDownLatch = new CountDownLatch(threadCount);for (int i = 0; i < threadCount; i++) {new Thread(() -> {try {for (int j = 0; j < 1000000; j++) {incr();}} finally {countDownLatch.countDown();}}).start();}countDownLatch.await();long t2 = System.currentTimeMillis();System.out.println(String.format("结果:%s,耗时(ms):%s", count, (t2 - t1)));}}
输出:
结果:50000000,耗时(ms):971结果:50000000,耗时(ms):915结果:50000000,耗时(ms):920结果:50000000,耗时(ms):923结果:50000000,耗时(ms):910结果:50000000,耗时(ms):916结果:50000000,耗时(ms):923结果:50000000,耗时(ms):916结果:50000000,耗时(ms):912结果:50000000,耗时(ms):908
平均耗时:920毫秒
AtomicLong内部采用CAS的方式实现,并发量大的情况下,CAS失败率比较高,导致性能比synchronized还低一些。并发量不是太大的情况下,CAS性能还是可以的。
AtomicLong属于JUC中的原子类,还不是很熟悉的可以看一下:JUC中原子类,一篇就够了
方式3:LongAdder实现
先介绍一下LongAdder,说到LongAdder,不得不提的就是AtomicLong,AtomicLong是JDK1.5开始出现的,里面主要使用了一个long类型的value作为成员变量,然后使用循环的CAS操作去操作value的值,并发量比较大的情况下,CAS操作失败的概率较高,内部失败了会重试,导致耗时可能会增加。
LongAdder是JDK1.8开始出现的,所提供的API基本上可以替换掉原先的AtomicLong。LongAdder在并发量比较大的情况下,操作数据的时候,相当于把这个数字分成了很多份数字,然后交给多个人去管控,每个管控者负责保证部分数字在多线程情况下操作的正确性。当多线程访问的时,通过hash算法映射到具体管控者去操作数据,最后再汇总所有的管控者的数据,得到最终结果。相当于降低了并发情况下锁的粒度,所以效率比较高,看一下下面的图,方便理解:

代码:
package com.itsoku.chat32;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutionException;import java.util.concurrent.atomic.AtomicLong;import java.util.concurrent.atomic.LongAdder;/*** 跟着阿里p7学并发,微信公众号:javacode2018*/public class Demo3 {static LongAdder count = new LongAdder();public static void incr() {count.increment();}public static void main(String[] args) throws ExecutionException, InterruptedException {for (int i = 0; i < 10; i++) {count.reset();m1();}}private static void m1() throws ExecutionException, InterruptedException {long t1 = System.currentTimeMillis();int threadCount = 50;CountDownLatch countDownLatch = new CountDownLatch(threadCount);for (int i = 0; i < threadCount; i++) {new Thread(() -> {try {for (int j = 0; j < 1000000; j++) {incr();}} finally {countDownLatch.countDown();}}).start();}countDownLatch.await();long t2 = System.currentTimeMillis();System.out.println(String.format("结果:%s,耗时(ms):%s", count.sum(), (t2 - t1)));}}
输出:
结果:50000000,耗时(ms):206结果:50000000,耗时(ms):105结果:50000000,耗时(ms):107结果:50000000,耗时(ms):107结果:50000000,耗时(ms):105结果:50000000,耗时(ms):99结果:50000000,耗时(ms):106结果:50000000,耗时(ms):102结果:50000000,耗时(ms):106结果:50000000,耗时(ms):102
平均耗时:100毫秒
代码中new LongAdder()创建一个LongAdder对象,内部数字初始值是0,调用increment()方法可以对LongAdder内部的值原子递增1。reset()方法可以重置LongAdder的值,使其归0。
方式4:LongAccumulator实现
LongAccumulator介绍
LongAccumulator是LongAdder的功能增强版。LongAdder的API只有对数值的加减,而LongAccumulator提供了自定义的函数操作,其构造函数如下:
/*** accumulatorFunction:需要执行的二元函数(接收2个long作为形参,并返回1个long)* identity:初始值**/public LongAccumulator(LongBinaryOperator accumulatorFunction, long identity) {this.function = accumulatorFunction;base = this.identity = identity;}
示例代码:
package com.itsoku.chat32;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutionException;import java.util.concurrent.atomic.LongAccumulator;import java.util.concurrent.atomic.LongAdder;/*** 跟着阿里p7学并发,微信公众号:javacode2018*/public class Demo4 {static LongAccumulator count = new LongAccumulator((x, y) -> x + y, 0L);public static void incr() {count.accumulate(1);}public static void main(String[] args) throws ExecutionException, InterruptedException {for (int i = 0; i < 10; i++) {count.reset();m1();}}private static void m1() throws ExecutionException, InterruptedException {long t1 = System.currentTimeMillis();int threadCount = 50;CountDownLatch countDownLatch = new CountDownLatch(threadCount);for (int i = 0; i < threadCount; i++) {new Thread(() -> {try {for (int j = 0; j < 1000000; j++) {incr();}} finally {countDownLatch.countDown();}}).start();}countDownLatch.await();long t2 = System.currentTimeMillis();System.out.println(String.format("结果:%s,耗时(ms):%s", count.longValue(), (t2 - t1)));}}
输出:
结果:50000000,耗时(ms):138结果:50000000,耗时(ms):111结果:50000000,耗时(ms):111结果:50000000,耗时(ms):103结果:50000000,耗时(ms):103结果:50000000,耗时(ms):105结果:50000000,耗时(ms):101结果:50000000,耗时(ms):106结果:50000000,耗时(ms):102结果:50000000,耗时(ms):103
平均耗时:100毫秒
LongAccumulator的效率和LongAdder差不多,不过更灵活一些。
调用new LongAdder()等价于new LongAccumulator((x, y) -> x + y, 0L)。
从上面4个示例的结果来看,LongAdder、LongAccumulator全面超越同步锁及AtomicLong的方式,建议在使用AtomicLong的地方可以直接替换为LongAdder、LongAccumulator,吞吐量更高一些。
最新资料
注意:本文归作者所有,未经作者允许,不得转载