目录
什么是线程安全?
当多个线程去访问同一个类(对象或方法)的时候,该类都能表现出正常的行为(与自己预想的结果一致),那我们就可以所这个类是线程安全的。
看一段代码:
package com.itsoku.chat04;/*** 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!*/public class Demo1 {static int num = 0;public static void m1() {for (int i = 0; i < 10000; i++) {num++;}}public static class T1 extends Thread {@Overridepublic void run() {Demo1.m1();}}public static void main(String[] args) throws InterruptedException {T1 t1 = new T1();T1 t2 = new T1();T1 t3 = new T1();t1.start();t2.start();t3.start();//等待3个线程结束打印numt1.join();t2.join();t3.join();System.out.println(Demo1.num);/*** 打印结果:* 25572*/}}
Demo1中有个静态变量num,默认值是0,m1()方法中对num++执行10000次,main方法中创建了3个线程用来调用m1()方法,然后调用3个线程的join()方法,用来等待3个线程执行完毕之后,打印num的值。我们期望的结果是30000,运行一下,但真实的结果却不是30000。上面的程序在多线程中表现出来的结果和预想的结果不一致,说明上面的程序不是线程安全的。
线程安全是并发编程中的重要关注点,应该注意到的是,造成线程安全问题的主要诱因有两点:
- 一是存在共享数据(也称临界资源)
- 二是存在多条线程共同操作共享数据
因此为了解决这个问题,我们可能需要这样一个方案,当存在多个线程操作共享数据时,需要保证同一时刻有且只有一个线程在操作共享数据,其他线程必须等到该线程处理完数据后再进行,这种方式有个高尚的名称叫互斥锁,即能达到互斥访问目的的锁,也就是说当一个共享数据被当前正在访问的线程加上互斥锁后,在同一个时刻,其他线程只能处于等待的状态,直到当前线程处理完毕释放该锁。在 Java 中,关键字 synchronized可以保证在同一个时刻,只有一个线程可以执行某个方法或者某个代码块(主要是对方法或者代码块中存在共享数据的操作),同时我们还应该注意到synchronized另外一个重要的作用,synchronized可保证一个线程的变化(主要是共享数据的变化)被其他线程所看到(保证可见性,完全可以替代volatile功能),这点确实也是很重要的。
那么我们把上面的程序做一下调整,在m1()方法上面使用关键字synchronized,如下:
public static synchronized void m1() {for (int i = 0; i < 10000; i++) {num++;}}
然后执行代码,输出30000,和期望结果一致。
synchronized主要有3种使用方式
- 修饰实例方法,作用于当前实例,进入同步代码前需要先获取实例的锁
- 修饰静态方法,作用于类的Class对象,进入修饰的静态方法前需要先获取类的Class对象的锁
- 修饰代码块,需要指定加锁对象(记做lockobj),在进入同步代码块前需要先获取lockobj的锁
synchronized作用于实例对象
所谓实例对象锁就是用synchronized修饰实例对象的实例方法,注意是实例方法,不是静态方法,如:
package com.itsoku.chat04;/*** 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!*/public class Demo2 {int num = 0;public synchronized void add() {num++;}public static class T extends Thread {private Demo2 demo2;public T(Demo2 demo2) {this.demo2 = demo2;}@Overridepublic void run() {for (int i = 0; i < 10000; i++) {this.demo2.add();}}}public static void main(String[] args) throws InterruptedException {Demo2 demo2 = new Demo2();T t1 = new T(demo2);T t2 = new T(demo2);t1.start();t2.start();t1.join();t2.join();System.out.println(demo2.num);}}
main()方法中创建了一个对象demo2和2个线程t1、t2,t1、t2中调用demo2的add()方法10000次,add()方法中执行了num++,num++实际上是分3步,获取num,然后将num+1,然后将结果赋值给num,如果t2在t1读取num和num+1之间获取了num的值,那么t1和t2会读取到同样的值,然后执行num++,两次操作之后num是相同的值,最终和期望的结果不一致,造成了线程安全失败,因此我们对add方法加了synchronized来保证线程安全。
注意:m1()方法是实例方法,两个线程操作m1()时,需要先获取demo2的锁,没有获取到锁的,将等待,直到其他线程释放锁为止。
synchronize作用于实例方法需要注意:
- 实例方法上加synchronized,线程安全的前提是,多个线程操作的是同一个实例,如果多个线程作用于不同的实例,那么线程安全是无法保证的
- 同一个实例的多个实例方法上有synchronized,这些方法都是互斥的,同一时间只允许一个线程操作同一个实例的其中的一个synchronized方法
synchronized作用于静态方法
当synchronized作用于静态方法时,锁的对象就是当前类的Class对象。如:
package com.itsoku.chat04;/*** 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!*/public class Demo3 {static int num = 0;public static synchronized void m1() {for (int i = 0; i < 10000; i++) {num++;}}public static class T1 extends Thread {@Overridepublic void run() {Demo3.m1();}}public static void main(String[] args) throws InterruptedException {T1 t1 = new T1();T1 t2 = new T1();T1 t3 = new T1();t1.start();t2.start();t3.start();//等待3个线程结束打印numt1.join();t2.join();t3.join();System.out.println(Demo3.num);/*** 打印结果:* 30000*/}}
上面代码打印30000,和期望结果一致。m1()方法是静态方法,有synchronized修饰,锁用于与Demo3.class对象,和下面的写法类似:
public static void m1() {synchronized (Demo4.class) {for (int i = 0; i < 10000; i++) {num++;}}}
synchronized同步代码块
除了使用关键字修饰实例方法和静态方法外,还可以使用同步代码块,在某些情况下,我们编写的方法体可能比较大,同时存在一些比较耗时的操作,而需要同步的代码又只有一小部分,如果直接对整个方法进行同步操作,可能会得不偿失,此时我们可以使用同步代码块的方式对需要同步的代码进行包裹,这样就无需对整个方法进行同步操作了,同步代码块的使用示例如下:
package com.itsoku.chat04;/*** 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!*/public class Demo5 implements Runnable {static Demo5 instance = new Demo5();static int i = 0;@Overridepublic void run() {//省略其他耗时操作....//使用同步代码块对变量i进行同步操作,锁对象为instancesynchronized (instance) {for (int j = 0; j < 10000; j++) {i++;}}}public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(instance);Thread t2 = new Thread(instance);t1.start();t2.start();t1.join();t2.join();System.out.println(i);}}
从代码看出,将synchronized作用于一个给定的实例对象instance,即当前实例对象就是锁对象,每次当线程进入synchronized包裹的代码块时就会要求当前线程持有instance实例对象锁,如果当前有其他线程正持有该对象锁,那么新到的线程就必须等待,这样也就保证了每次只有一个线程执行i++;操作。当然除了instance作为对象外,我们还可以使用this对象(代表当前实例)或者当前类的class对象作为锁,如下代码:
//this,当前实例对象锁synchronized(this){for(int j=0;j<1000000;j++){i++;}}//class对象锁synchronized(Demo5.class){for(int j=0;j<1000000;j++){i++;}}
分析代码是否互斥的方法,先找出synchronized作用的对象是谁,如果多个线程操作的方法中synchronized作用的锁对象一样,那么这些线程同时异步执行这些方法就是互斥的。如下代码:
package com.itsoku.chat04;/*** 微信公众号:路人甲Java,专注于java技术分享(带你玩转 爬虫、分布式事务、异步消息服务、任务调度、分库分表、大数据等),喜欢请关注!*/public class Demo6 {//作用于当前类的实例对象public synchronized void m1() {}//作用于当前类的实例对象public synchronized void m2() {}//作用于当前类的实例对象public void m3() {synchronized (this) {}}//作用于当前类Class对象public static synchronized void m4() {}//作用于当前类Class对象public static void m5() {synchronized (Demo6.class) {}}public static class T extends Thread{Demo6 demo6;public T(Demo6 demo6) {this.demo6 = demo6;}@Overridepublic void run() {super.run();}}public static void main(String[] args) {Demo6 d1 = new Demo6();Thread t1 = new Thread(() -> {d1.m1();});t1.start();Thread t2 = new Thread(() -> {d1.m2();});t2.start();Thread t3 = new Thread(() -> {d1.m2();});t3.start();Demo6 d2 = new Demo6();Thread t4 = new Thread(() -> {d2.m2();});t4.start();Thread t5 = new Thread(() -> {Demo6.m4();});t5.start();Thread t6 = new Thread(() -> {Demo6.m5();});t6.start();}}
分析上面代码:
- 线程t1、t2、t3中调用的方法都需要获取d1的锁,所以他们是互斥的
- t1/t2/t3这3个线程和t4不互斥,他们可以同时运行,因为前面三个线程依赖于d1的锁,t4依赖于d2的锁
- t5、t6都作用于当前类的Class对象锁,所以这两个线程是互斥的,和其他几个线程不互斥
最新资料
注意:本文归作者所有,未经作者允许,不得转载